g
Size: a a a
АН
S
fun mul :: "nat ⇒ nat ⇒ nat"
where
"mul n 0 = 0" |
"mul n (Suc(m)) = n + mul n m"
lemma[simp]: "mul 0 m = 0"
apply (induction m)
apply auto
done
BT
АН
fun mul :: "nat ⇒ nat ⇒ nat"
where
"mul n 0 = 0" |
"mul n (Suc(m)) = n + mul n m"
lemma[simp]: "mul 0 m = 0"
apply (induction m)
apply auto
done
SR
BT
S
SR
g
М
fun mul :: "nat ⇒ nat ⇒ nat"
where
"mul n 0 = 0" |
"mul n (Suc(m)) = n + mul n m"
lemma[simp]: "mul 0 m = 0"
apply (induction m)
apply auto
done
S
g
АН
BT
SR
Р
S
BT
BT