BT
Size: a a a
BT
S
lemma[simp]: "mul (Suc n) m = m + n * m"
apply (induction m)
apply auto
done
lemma "mul n m = n * m"
apply (induction n)
apply auto
done
S
S
BT
BT
S
S
BT
BT
М
М
S
fun sub :: "nat ⇒ nat ⇒ nat"
where
"sub 0 m = 0" |
"sub n 0 = n" |
"sub (Suc n) (Suc m) = sub n m"
lemma[simp]: "sub 0 m ≡ 0"
by simp
lemma[simp]: "sub n 0 = n"
apply (induction n)
apply auto
done
lemma[simp]: "sub m m = 0"
apply (induction m)
apply auto
done
lemma[simp]: "sub n (Suc 0) = n - Suc 0"
apply (induction n)
apply auto
done
BT
S
sub n m = 0при
m >= n
S
sub n m = n - m
m < n
BT
sub n m = 0при
m >= n
М
S
М