Size: a a a

Наука и Техника

2015 October 28
Наука и Техника
15-ти часовой снос 1400 тонногомоста в time-lapse.
источник
Наука и Техника
источник
Наука и Техника
Вчерашнее землетрясение в Пакистане
источник
Наука и Техника
источник
Наука и Техника
10 теоретических частиц, которые могут объяснить все

На протяжении веков человечество вгрызалось в гранит науки, пытаясь выяснить точный состав Вселенной. Древние греки первыми предположили существование атомов, которые, по их мнению, были мельчайшими частицами — «строительными блоками» всего сущего. На протяжении 1500 лет это было всем, что мы знали о материи. В 1897 году открытие электрона разрушило научный мир до руин. Оказалось, что точно так же, как молекулы состояли из атомов, атомы состоят из компонентов.

И чем глубже мы смотрели, тем больше ответов, казалось, утекает сквозь наши пальцы. Даже протоны и нейтроны — строительные блоки атомов — изготовлены из еще меньших частиц — кварков. Каждое открытие порождало больше вопросов. Состоит ли время и пространство из россыпей мельчайших частиц, которые даже невозможно увидеть? Возможно. Перед вами десять теоретических частиц, которые могут объяснить все. Если мы их найдем.

Страпельки

Начнем с чего-то, близкого к тому, что мы уже знаем — кварки. Насчитывается шесть типов кварков. «Верхние» и «нижние» кварки более распространены, из них состоят протоны и нейтроны. «Странные» кварки, с другой стороны, не так распространены. Когда странные кварки объединяются с верхними и нижними кварками в равных количествах, они создают частицу под названием «страпелька» (от «странный» и «капелька»). Страпельки — это тончайшие фрагменты, из которых состоит странная материя.

Согласно теории странной материи, страпельки образуются в природе, когда массивная нейтронная звезда — тяжелая коллапсирующая звезда — выдает столько давления, что электроны и протоны в ядре сливаются, а затем коллапсируют дальше в нечто вроде плотного кваркового пузыря, который мы называем странной материей. И хотя большие страпельки могут теоретически существовать за пределами центров звезд с высоким давлением, вероятнее всего, они уплыли от таких звезд в другие солнечные системы — включая нашу собственную.

Но опять же: если они существуют, большая страпелька может превратить ядро атома в другую страпельку, если столкнется с ним. Новая страпелька столкнется с другими ядрами, что вызовет цепную реакцию, пока вся материя на Земле не будет превращена в странную материю. На самом деле, подобные страхи были вызваны работой Большого адронного коллайдера, представителям которого удалось в свое время убедить людей в надуманности этого факта. Вряд ли они могли бы случайно создать страпельку, которая уничтожила бы планету.

Суперпартнеры

Теория суперсимметрии гласит, что у каждой частицы во Вселенной есть противоположная частица-близнец, известная как суперсимметричная частица, суперпартнер или счастица. Таким образом, у каждого кварка есть скварк, который разделяет с первым идеальную симметрию. У каждого фотона есть фотино. И так далее, пока ни одна из 61 известных элементарных частиц не останется без внимания. Что ж, если их так много, почему мы не обнаружили ни одну?

Есть такая теория: в физике элементарных частиц более тяжелые частицы распадаются быстрее, чем более легкие. Если образуется достаточно тяжелая частица, она сломается практически сразу после создания. Если предположить, что счастицы невероятно тяжелые, они должны разрушаться в мгновение ока, пока их суперпартнеры — частицы, которые мы наблюдаем — живут. Это может объяснить, почему во Вселенной наблюдается такой перевес темной материи — счастицы могут содержать темную материю и существовать в поле, которое для нас далеко и ненаблюдаемо.

Античастицы

Материя состоит из частиц — и точно так же антивещество состоит из античастиц. В этом есть здравый смысл. Античастицы обладают такой же массой, что и нормальные частицы, но противоположным зарядом и противоположным угловым моментом (спином). Похоже на суперсимметрию, но в отличие от частиц, античастицы ведут себя точно так же, как частицы, даже участвуют в создании антиэлементов вроде антиводорода. В принципе, на любую материю найдется антиматерия.
источник
Наука и Техника
Гравифотоны

Есть и другая теоретическая гравитационная частица, и она прекрасна чуть менее, чем полностью. Гравифотон — это частица, которая создается, когда гравитационное поле проявляется в пятом измерении. Она берет начало из теории Калуцы — Клейна, которая предлагает объединить электромагнетизм и гравитацию в одну силу при условии, что в пространстве-времени есть больше, чем пять измерений. Гравифотон обладал бы характеристиками гравитона, но также принимал бы свойства фотона и создавал то, что физики называют «пятой силой» (ну а вообще есть только четыре фундаментальных силы).

Другие теории утверждают, что гравифотон мог бы быть суперпартнером гравитона, но они отталкивались бы и притягивались одновременно. В теории, это могло бы создать эффект антигравитации. И это только в пятом измерении. Теория супергравитации тоже постулирует существование гравифотонов, но предлагает расширить количество измерений до… одиннадцати.

Преоны

Из чего состоят кварки? Для начала, давайте ознакомимся с масштабами. В ядре атома золота семьдесять девять протонов. Каждый протон состоит из трех кварков. Ширина ядра атома золота — примерно восемь фемтометров в поперечнике. Это восемь миллионных долей нанометра, а нанометр — это одна миллиардная от метра. Кварки очень маленькие, а преоны, в таком случае, должны быть настолько ничтожно малы, что их просто невозможно измерить современными методами.

Есть и другие слова, которые используются для описания теоретических строительных блоков кварков, включая примоны, субкварки, квинки и твидлы, но «преон» приняли лучше всех. И преоны — весьма важная часть теоретической физики, потому что на данный момент фундаментальной частицей остаются кварки. Если выяснится, что они состоят из других частей, это откроет путь к тысячам новых теорий. Например, одна из теорий гласит, что неуловимое антивещество во Вселенной на самом деле содержится в преонах, поэтому все вокруг обладает частичками антиматерии, которая заперта в этом всем. Согласно этой теории, и вы являетесь носителем антивещества — просто вы не сможете ее увидеть, потому что материя складывается из более крупных блоков.

Тахионы

Ничто не приближается к нарушению известных законов относительности ближе, чем тахион. Эта частица движется быстрее света, и если бы она существовала, фундаментальное ограничение скорости больше не было бы ограничено скоростью света. На самом деле, это означало бы, что скорость света стала бы центральной точкой — и по обе стороны от этой точки будут частицы, которые движутся бесконечно медленно (не движутся вообще), и тахионы, которые могут двигаться бесконечно быстро.

Как ни странно, их отношение к скорости света было бы зеркальным. Грубо говоря, когда обычная частица ускоряется, ее энергетические потребности увеличиваются. Чтобы прорвать барьер световой скорости, нужно бесконечное количество энергии. В случае с тахионом, чем медленнее он движется, тем больше энергии требует. Когда он замедляется и приближается к скорости света с другого конца, его энергетические требования приближаются к бесконечности. Но когда его скорость растет, и нужда в энергии уменьшается — ему не нужно энергии вообще, чтобы двигаться с бесконечной скоростью.

Представьте его как магнит — один магнит приклеен к стене, а другой у вас в руке. Когда вы соприкасаете одинаковые полюса магнитов, ваш магнит отталкивается. Чем ближе вы приближаете свой магнит, тем труднее вам нажимать. Теперь представьте, что по ту сторону стены есть другой магнит, который делает то же самое. Магнит на стене — это скорость света, а два других магнита — это тахионы и обычные частицы. Если бы даже тахион существовал, они всегда будут замкнуты по ту сторону ловушки, которую мы сами не можем обойти. Хотя технически они могут быть использованы для отправления сообщений в прошлое.

Струны
источник
Наука и Техника
Почти все частицы, о которых мы рассказали, называются точечными частицами: кварки и фотоны существуют как одна точка — маленькая крошечная точечка — с нулевыми измерениями. Теория струн предполагает, что эти элементарные частицы — далеко не точки, а струны, одномерные нити частиц. По своей сути, теория струн — это некая «теория всего», которая хочет примирить гравитацию и квантовую физику. В теории струн — множество отдельных теорий, да и самих теорий струн тоже много. Из того, что нам сейчас известно, гравитация и квантовая механика не могут сосуществовать физически в одном пространстве — гравитация не работает на квантовом уровне.

Таким образом, в широком смысле, теория струн на самом деле представляет собой квантовую теорию гравитации. Для сравнения, струны могут заменить преоны в качестве строительных блоков для кварков, хотя на более высоких уровнях все останется прежним. И в теории струн струна может превратиться во что угодно в зависимости от формы, в которую сворачивается. Если струна остается открытой, она становится фотоном. Если концы одной струны замыкаются в петлю, она становится гравитоном. Примерно так же дерево может стать целой хижиной или флейтой.

Как мы отметили, теорий струн много, и каждая из них предсказывает различное число измерений. Большинство из этих теорий утверждает, что существует десять или одиннадцать измерений, а бозонно-струнная теория (или теория суперструн) утверждает, что измерений не меньше двадцати шести. В этих других измерениях гравитация обладает равной или большей силой относительно других фундаментальных сил, что объясняет слабость гравитации в наших трех пространственных измерениях.

Браны

Если вы действительно хотите получить объяснение гравитации, вам нужно углубиться в М-теорию, или мембранную теорию. Мембраны, или браны — это частицы, которые могут курсировать по нескольким измерениям. К примеру, 0-брана — это точечная брана, которая существует в нулевых измерениях как кварк. 1-брана обладает одним измерением — это струна. 2-брана — двухмерная мембрана и так далее. Многомерные браны могут обладать любыми размерами, что приводит к теории о том, что наша Вселенная — это одна большая брана с четырьмя измерениями. Эта брана — наша Вселенная — просто кусок многомерного пространства.

Что касается гравитации, наша четырехмерная брана просто не может содержать ее, поэтому энергия гравитации улетучивается в другие браны, в многомерное пространство; мы просто довольствуемся тем, что осталось, поэтому гравитация кажется такой слабой сравнительно с другими силами.

Разумеется, нетрудно додумать, что есть много бран, движущихся через пространство — бесконечных бран через бесконечное пространство. Отсюда рождаются теории мультивселенной и циклической вселенной. Согласно последней, вселенная подчиняется циклам: она расширяется из-за энергии Большого Взрыва, затем гравитация стягивает все в одну точку. Это стягивание порождает новый Взрыв, и так до бесконечности.

Частица Бога

Бозон Хиггса был обнаружен 14 марта 2013 года на Большом адронном коллайдере и после подтвержден, а за его находку присудили Нобелевскую премию. Впервые его существование было предсказано в 60-х годах. Это частица, которая дает массу другим частицам.

Бозон Хиггса родился из поля Хиггса и был предложен в качестве объяснения тому, почему некоторые частицы, которые должны обладать массой, фактически ею не обладают. Поле Хиггса — которое никто никогда не наблюдал — должно существовать во всей Вселенной и предоставлять силу, необходимую для того, чтобы частицы приобретали массу. Бозон Хиггса должен заполнить огромные пробелы в Стандартной модели, весьма популярной и объясняющей практически все (кроме гравитации, конечно).

Бозон Хиггса важен тем, что доказывает существование поля Хиггса и объясняет, как энергия внутри поля Хиггса может проявляться в виде массы. Также он важен, поскольку создает прецедент. До его обнаружения он был обычной теорией. У него была математическая модель, физические свойства, спин — все.
источник
Наука и Техника
Просто нужны были доказательства его существования. И мы его нашли.

И если мы смогли сделать это один раз, кто может поспорить, что любая из этих частиц не может быть реальной? Тахионы, страпельки, гравитоны — эти частицы могут полностью перевернуть нашу картину мира и приблизить нас к пониманию фундаментальных основ мира, в котором мы живем.
источник
Наука и Техника
источник
Наука и Техника
Вселенная, какой ее видят самые мощные телескопы (даже в теории), огромна, велика и массивна. Вместе с фотонами и нейтрино, она содержит около 10^90 частиц, скомканных и сгруппированных вместе с сотнях миллиардов или триллионов галактик. В каждой из этих галактик триллион звезд (в среднем), и они разбросаны в космосе в сфере около 92 миллиардов световых лет в диаметре, с нашей точки зрения.

Но несмотря на то, что подсказывает нам интуиция, это все не означает, что мы находимся в центре конечной Вселенной. По сути, все доказательства указывают совсем на противоположное.

Причина того, что Вселенная кажется конечной для нас — причина того, что мы не видим дальше определенного расстояния, — не заключается в том, что Вселенная конечна, а скорее в том, что в своем нынешнем состоянии Вселенная существует определенное время. Вы должны знать, что Вселенная не постоянна во времени и пространстве, а эволюционировала от более однородной, горячей и плотной к холодной, неоднородной и размытой к нынешнему времени.

В результате этого у нас есть богатая Вселенная, изобилующая многими поколениями звезд, сверххолодным фоном остаточного излучения, удаляющимися от нас галактиками и определенными пределами, ограничивающими наше зрение. Эти пределы устанавливаются расстоянием, которое прошел свет с момента Большого Взрыва.

И это, как вы понимаете, совсем не означает, что за пределами видимой Вселенной нет ничего. У нас есть все основания полагать, как с теоретической, так и эмпирической точек зрения, что за пределами видимого есть много и даже бесконечно много невидимого.

Экспериментально мы можем измерить несколько интересных величин, включая пространственную кривизну Вселенной, ее гладкость и однородность в температурном и плотностном планах и ее эволюцию со временем.

Мы обнаружили, что Вселенная относительно плоская в пространственном отношении и относительно равномерна в своем объеме, который выходит за пределы видимого нам; возможно, наша Вселенная входит в другую Вселенную, крайне похожую на нашу, но растягивающуюся на сотни миллиардов световых лет во всех направлениях, чего мы не видим.

Однако в теории все еще интереснее. Мы можем экстраполировать Большой Взрыв назад и дойти даже не до его чрезвычайно горячего, плотного, расширяющегося состояния и даже не до бесконечно горячего и плотного состояния, а еще дальше — до самых первых моментов его существования — до фазы, которая предшествовала Большому Взрыву.

Эта фаза, период космологической инфляции, описывает фазу Вселенной, где вместо Вселенной, наполненной материей и радиацией, была Вселенная, наполненная энергией, присущей самому пространству: в состоянии, которое приводило к расширению Вселенной в геометрической прогрессии. То есть Вселенная расширялась не постепенно вместе с неторопливым течением времени, а в два, четыре, шесть, восемь раз быстрее — чем дальше от центра, тем больше прогрессия.

Поскольку это расширение происходило не только по экспоненте, но и весьма быстро, «удвоение» происходило с периодичностью в 10^-35 секунды. То есть как только проходило 10^-34 секунды, Вселенная была уже в 1000 раз больше изначального размера; еще 10^-33 секунд — Вселенная уже в 10^30 раз больше изначального размера; к тому времени, как прошло 10^-32 секунд, Вселенная была в 10^300 раз больше изначального размера и так далее. Экспонента — сильная штука не потому, что быстрая, а потому что настойчивая.

Очевидно, что Вселенная не всегда расширялась таким образом — мы здесь, инфляция завершилась, Большой Взрыв состоялся. Мы можем представить инфляцию в виде шара, скатывающегося с пологого. Пока шар находится у вершины холма, он катится, хоть и медленно, инфляция продолжается. Когда шар скатывается в долину, инфляция заканчивается, энергия пространства преобразуется в материю и излучение; инфляционное состояние перетекает в горячий Большой Взрыв.
источник
Наука и Техника
Это означает, что чем дальше идет время, тем больше пространства создается в процессе инфляции, и в некоторых регионах, с позиции вероятности, инфляция заканчивается, тогда как в других продолжается. Регионы, в которых заканчивается инфляция, переживают Большой Взрыв и наблюдают рождение Вселенной, тогда как остальные регионы продолжают переживать инфляцию.

По мере течения времени, из-за динамики расширения, регионы, в которых инфляция завершилась, никогда не сталкиваются и не взаимодействуют; регионы же, в которых инфляция продолжается, толкают друг друга, взаимодействуют. Вот именно этого мы и ждем увидеть, основываясь на известных законах физики и наблюдаемых событий, существующих в нашей Вселенной, которые расскажут нам об инфляционных состояниях. Некоторых вещей, правда, мы не знаем, что рождает неопределенности и вероятности одновременно.

Мы не знаем, как долго длилось инфляционное состояние, пока не закончилось и не перешло в Большой Взрыв. Вселенная может быть ненамного меньше наблюдаемой, может быть на много порядков больше или вообще бесконечной.
Мы не знаем, будут ли регионы, в которых инфляция завершилась, одинаковыми или же серьезно отличаться от нашего. Есть допущение, что существуют (неизвестные) физические динамики, которые приводят фундаментальные константы в соответствие — массы частиц, силы фундаментальных взаимодействий, количество темной энергии, — вроде тех, что в нашем регионе. Но есть и допущение, что в разных регионах с оконченной инфляцией могут быть совершенно разные вселенные с разными типами физик и констант.
И если вселенные похожи друг на друга с точки зрения физики, а число этих вселенных бесконечно, а многомировая интерпретация квантовой механики абсолютно верна, значит ли это, что существуют параллельные вселенные, в которых все развивается точно так же, как в нашей, за исключением одного-единственного крошечного квантового события?
Инфляция

Короче говоря, может ли существовать подобная нашей вселенная, в которой все происходило в точности так же, за исключением одной крошечной вещи, которая кардинально изменила жизнь вашего альтер эго в другой вселенной?

Где вы уехали работать за границу, а не остались в стране?
Где вы избили грабителя, а не он вас?
Где вы отказались от первого поцелуя?
Где событие, определившее жизнь или смерть, пошло иначе?
Это невероятно: возможно, существует вселенная на каждый из возможных вариантов развития событий. Есть даже ненулевая вероятность появления вселенной, в точности копирующей нашу.

Правда, есть множество оговорок, чтобы допускать такое. Во-первых, инфляционное состояние должно было продолжаться не только 13,8 миллиарда лет — как в нашей Вселенной — а в течение неограниченного количества времени. Почему?

Если Вселенная расширялась экспоненциально — не в течение кратчайшей доли секунды, а в течение 13,8 миллиарда лет (4 x 10^17 секунд), — то мы говорим о гигантском пространстве. То есть, даже если существуют регионы, в которых инфляция завершилась, большую часть Вселенной будут представлять регионы, в которых она продолжается.

Таким образом, мы будем иметь дело с по меньшей мере 10^10^50 вселенных, которые начинали с начальными условиями, подобными нашей Вселенной. Это гигантское число. И все же бывают числа и побольше. Например, если взяться описать возможные вероятности взаимодействия частиц.

В каждой вселенной 10^90 частиц, и нам нужно, чтобы у каждой из них была та же история взаимодействия на протяжении 13,8 миллиарда лет, что и у нашей вселенной, чтобы получить идентичную вселенную. Для вселенной с 10^90 частиц с 10^10^50 возможных вариантов такой вселенной нужно, чтобы каждая эта частица взаимодействовала с другой на протяжении 13,8 миллиарда лет. Число, которое вы видите выше, это просто 1000! (или (10^3)!), факториал 1000, описывающий число возможных перестановок 1000 разных частиц в любой момент времени. (10^3)! больше, чем (10^1000), что-то около 10^2477.
источник
Наука и Техника
Но во Вселенной не 1000 частиц, а 10^90. Каждый раз, когда две частицы взаимодействуют между собой, может быть не только один результат, а целый квантовый спектр результатов. Получается, есть намного больше, чем (10^90)! возможных результатов взаимодействия частиц во Вселенной, и это число во много гуголплексов раз больше ничтожного числа вроде 10^10^50.

Другими словами, число возможных вариантов взаимодействия частиц в любой Вселенной возрастает до бесконечности намного быстрее, чем растет число возможных Вселенных вследствие инфляции.

Даже если отложить в сторону такие моменты, что может быть бесконечное число значений фундаментальных констант, частиц и взаимодействий, даже если отложить проблемы интерпретаций, мол, описывает ли многомировая интерпретация нашу физическую реальность в принципе, все сводится к тому, что число возможных вариантов развития растет так быстро — намного быстрее, чем экспоненциально, — что если только инфляция не продолжается бесконечно, параллельных вселенных, идентичных нашей, не существует.

Теорема о сингулярности говорит нам, что, скорее всего, инфляционное состояние не могло продолжаться бесконечное количество времени, а возникло как далекая, но конечная точка в прошлом. Есть множество вселенных — возможно, с другими законами, а может, и нет — но их недостаточно, чтобы дать нам альтернативную версию нас самих; число возможных вариантов растет слишком быстро по сравнению со скорость возникновения возможных вселенных.

Что это значит для нас?

Это означает, что у вас нет выбора, кроме как в этой Вселенной. Принимайте решения без сожалений: занимайтесь любимым делом, умейте постоять за себя, живите на полную катушку. Больше нет никаких вселенных с другими версиями вас и нет никакого будущего, кроме того, ради которого вы живете.
источник
Наука и Техника
источник
Наука и Техника
Физики научились управлять пузырьками в кипящей воде

Ученые из Массачусетского технологического института научились «включать» и «выключать» по желанию образование пузырьков на поверхности водонагревателей. При помощи нового метода можно точно управлять процессом кипения, добиваясь таким образом максимальной эффективности и избегая опасности перегрева. Исследование опубликовано в Nature Communications.

Для контроля образования пузырьков авторы изменяли смачиваемость поверхности нагревателя. Это достигалось за счет адсорбции-десорбции поверхностно-активных веществ (ПАВ) с незаряженным гидрофобным «хвостом» и заряженной «головой». Варьируя заряд нагревателя, ученые заставляли молекулы ПАВ садиться на поверхность или удаляться от нее.

Если нагреватель покрывался молекулами ПАВ, их гидрофобные «хвосты» торчали наружу, ухудшая смачиваемость поверхности. Из-за этого улучшалось образование пузырьков. В том случае, когда нагреватель был заряжен тем же знаком, что и «головы» молекул ПАВ, они покидали поверхность, смачиваемость улучшалась, и образование пузырьков вновь становилось невыгодным.

Авторы показали, что процесс сорбции-десорбции происходил в интервале десятых долей секунды. При этом для перезарядки поверхности требовались небольшие разности потенциалов порядка двух вольт. Также оказалось, что при помощи нового метода можно контролировать образование пузырьков не только во времени, но и в пространстве. Для демонстрации ученые изготовили массив из восьми независимых электродов и «включали» образование пузырьков на разных участках кюветы.

Контроль над образование пузырьков пара играет огромную роль в промышленных водонагревательных установках. Слишком слабое парообразование приводит к медленному отводу тепла от стенок и малой эффективности теплообмена. Тогда как слишком активная генерация пузырьков может вызвать образование сплошной прослойки пара на поверхности нагревателя, что в свою очередь приведет к перегреву и, вероятно, поломке.

Чаще всего образование пузырьков контролируют за счет температуры нагрева, а также пассивной модификации поверхности. Например, если нагреватель покрыть «лесом» наностержней, пузырьки образуются более равномерно. Существовали и «активные» методы, но для их реализации требовались разности потенциалов на несколько порядков выше, чем описано в новой работе.

Тарас Молотилин, nplus1.ru
источник
Наука и Техника
источник
Наука и Техника
источник
Наука и Техника
13-летний мальчик убедил родителей купить ему GTA V с помощью презентации в PowerPoint
источник
Наука и Техника
источник
Наука и Техника
источник
Наука и Техника
источник