JF
Size: a a a
JF
JF
JF
def gradient_descent(m_now, b_now, L):
m_gradient = 0
b_gradient = 0
n = float(395)
for i in range(395):
X = df[["age", "traveltime", "studytime", "failures", "G1", "G2"]].to_numpy()
Y = df[["G3"]].to_numpy()
m_gradient += -(2/n) * X * (Y - (m_now * X + b_now))
b_gradient += -(2/n) * (Y - (m_now * X + b_now))
m = m_now - L * m_gradient
b = b_now - L * b_gradient
return [m, b]
JF
NM
👑️
NM
NM
JF
JF
JF
👑️
JF
👑️
👑️
I
👑️
JF
I