BT
Size: a a a
BT
S
BT
BT
М
BT
S
BT
S
М
В
В
S
S
М
S
fun sub :: "nat ⇒ nat ⇒ nat"
where
"sub 0 m = 0" |
"sub n 0 = n" |
"sub (Suc n) (Suc m) = sub n m"
S
S
S
S
theory Add
imports Main
begin
fun add :: "nat ⇒ nat ⇒ nat"
where "add 0 n = n" |
"add (Suc n) m = Suc (add n m)"
lemma support1[simp]: "add n 0 = n"
apply (induction n)
apply auto
done
lemma support2[simp]: "Suc (add y x) = add y (Suc x)"
apply (induction y)
apply auto
done
lemma "add x y = add y x"
apply (induction x)
apply auto
done
end