The word mass has two meanings in special relativity: rest mass or invariant mass is an invariant quantity which is the same for all observers in all reference frames, while relativistic is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, the rest mass and relativistic mass are equivalent to the rest energy and total energy of the body, respectively. The term relativistic mass tends not to be used in particle and nuclear physics and is often avoided by writers on special relativity, in favor of referring to the body's total energy.[1] In contrast, rest mass is usually preferred over rest energy. The measurable inertia and gravitational attraction of a body in a given frame of reference is determined by its relativistic mass, not merely its rest mass. For example, photons have zero rest mass but contribute to the inertia (and weight in a gravitational field) of any system containing them.
https://en.wikipedia.org/wiki/Mass_in_special_relativity