Люблю передачу "Что? Где? Когда?" и уважаю её магистров. Но тем ярче запоминаются их нечастые эпические фейлы — примерно как Леонель Месси, не забивший пенальти за Аргентину в финале Кубка Америки. Один такой фейл знатоков произошёл 19 декабря 1992 года.
Проиграв телезрителям 6:2, команда Блинова попросила доп. раунд, при этом сам Блинов, а также Друзь и Двинятин поставили на кон свои красные пиджаки и титулы Бессмертных. Тогда они получили вопрос:
Бреет ли сам себя цирюльник, если сам цирюльник бреет всех, кто не бреется сам?
И знатоки ответили "нет", то есть неправильно! А правильно — ни "да", ни "нет", дать однозначный ответ нельзя. И это такой известный логический парадокс, что странно магистрам ЧГК его не знать, а, кроме того, он настолько прост, что и не зная можно догадаться.
Однако хотелось бы не только напомнить этот забавный случай, но и внести некоторое уточнение в летопись ЧГК (см. ссылку внизу), куда вкралась неточность, которая с тех пор кочует из сайта в сайт. Там парадокс брадобрея, о котором задали вопрос команде Блинова, назван парадоксом Рассела, а это не так, хотя парадоксы и похожи.
Парадокс Рассела заключается в том, что невозможно сказать, существует ли множество всех множеств, не являющихся элементами самих себя (задайтесь вопросом — принадлежит ли такое множество само себе?). И это не только звучит сложнее, чем про брадобрея, но и сложнее по сути, как верно отмечено в статье википедии —
https://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%B4%D0%BE%D0%BA%D1%81_%D0%A0%D0%B0%D1%81%D1%81%D0%B5%D0%BB%D0%B0 http://chgk.tvigra.ru/letopis/?19921219